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The Journal of Immunology

CX3CR1 Reduces Kidney Fibrosis by Inhibiting Local
Proliferation of Profibrotic Macrophages

Daniel R. Engel,*,†,1 Torsten A. Krause,*,1 Sarah L. Snelgrove,‡,1 Stephanie Thiebes,*
Michael J. Hickey,‡ Peter Boor,x,{ A. Richard Kitching,‡,2 and Christian Kurts*,2

A dense network of macrophages and dendritic cells (DC) expressing the chemokine receptor CX3CR1 populates most tissues. We
recently reported that CX3CR1 regulates the abundance of CD11c+ DC in the kidney and thereby promotes renal inflammation in
glomerulonephritis. Given that chronic inflammation usually causes fibrosis, we hypothesized that CX3CR1 deficiency should
attenuate renal fibrosis. However, when we tested this hypothesis using the DC-independent murine fibrosis model of unilateral
ureteral obstruction, kidney fibrosis was unexpectedly more severe, despite less intrarenal inflammation. Two-photon imaging and
flow cytometry revealed in kidneys of CX3CR1-deficient mice more motile Ly6C/Gr-1+ macrophages. Flow cytometry verified that
renal macrophages were more abundant in the absence of CX3CR1 and produced more of the key profibrotic mediator, TGF-b.
Macrophages accumulated because of higher intrarenal proliferation, despite reduced monocyte recruitment and higher signs of
apoptosis within the kidney. These findings support the theory that tissue macrophage numbers are regulated through local
proliferation and identify CX3CR1 as a regulator of such proliferation. Thus, CX3CR1 inhibition should be avoided in DC-
independent inflammatory diseases because it may promote fibrosis. The Journal of Immunology, 2015, 194: 1628–1638.

T he renal mononuclear phagocyte system consists of an ex-
tensive network of mononuclear phagocytes (i.e., dendritic
cells [DCs] and macrophages) (1, 2). Although there is no

clear demarcation between these cell types, DCs are typically spe-
cialized at regulating other immune effector cells, especially T cells,
whereas macrophages preferentially act as immune effectors in innate
immune responses or contribute to tissue repair (3–6). In the healthy
kidney, most resident immune cells display phenotypic and functional
characteristics of DCs and can be distinguished from macrophages by
expression of the CD11c molecule (7). Furthermore, CD11c+ kidney
cells possess a transcriptome that resembles that of DCs but not of
macrophages (8, 9). Although kidney DCs have been shown to per-
form sentinel and regulatory functions in inflammation and infection
(10), macrophages contributed to host protection from infection and
maintained tissue homeostasis (1, 11, 12). In contrast, inappropriate
macrophage functions promoted fibrosis in various organs (13, 14). In

the kidney, macrophages but not DCs mediated fibrosis in unilateral
ureter ligation (UUO) and after ischemia/reperfusion (15–18). Several
mechanisms contribute to renal fibrosis, including the production of
the main profibrotic molecule TGF-b (14, 19). In the kidney, TGF-b
promotes fibrosis by activating fibroblasts and myofibroblasts, mod-
ulating the expression of tissue inhibitors of matrix metalloproteases
and by directly promoting synthesis of collagens (20). TGF-b secre-
tion has been linked to monocytes and macrophages (14), suggesting
that macrophages might mediate kidney fibrosis through this mediator.
Tissue macrophages partially originate from embryonic progen-

itors of the yolk sac or the fetal liver (21, 22), and from infiltrating
bone marrow–dependent progenitors such as monocytes, whereas
DCs can develop from monocytes or pre-DCs (23–25). The exact
contribution of the different precursors to the renal mononuclear
cell system is unclear. The chemokine receptor CX3CR1, also
known as fractalkine receptor, is ubiquitously expressed on most
tissue macrophages and DCs but does not play a major role for their
ontogeny, homeostatic migration, or colonization of tissues with
resident phagocytes (26, 27), except kidney DCs (3) and intestinal
macrophages (28–30). There is evidence that the survival of
monocytes and tissue macrophages depends on CX3CR1 (31-33),
and this required interaction with cell surface–bound CX3CL1 (34).
CX3CL1

+ cells have been shown to be present within glomeruli and
in the tubular compartment (35), but their exact identity is unclear.
Under inflammatory conditions, CCR2-dependent monocytes ex-

pressing the markers Ly6C and Gr1 enter inflamed tissues (36–38)
and rapidly give rise to DCs and macrophages (31, 39–41). In-
flammatory Gr1+ macrophages possess profibrotic properties (42),
and their depletion or genetic CCR2 deficiency attenuated tissue
damage and fibrosis in UUO (16), lupus nephritis (43), and ischemia/
reperfusion (44). Also, CX3CR1 has been implicated in monocyte
recruitment into inflamed tissues, like arteriosclerotic vessels (45),
the listeria-infected spleen (46), the eye (47), in colitis models (28),
or the skin (48). Furthermore, CX3CR1 may exert profibrotic func-
tions (49–55).
DCs and macrophages of the kidney abundantly express

CX3CR1 (56). CX3CR1 deficiency reduced entry of their pro-
genitors into the kidney and attenuated symptoms and fibrosis
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in ischemia/reperfusion injury (44, 49), hypertensive kidney
damage (54), and crescentic glomerulonephritis (3, 57). In con-
trast, the loss of renal phagocytes aggravated renal candidiasis
(58) but not pyelonephritis (3). Also, studies on human biopsy
material from fibrotic kidneys described upregulation of CX3CR1,
supporting a pathogenic role (59). However, in toxin- and in
obstruction-induced liver fibrosis, CX3CR1 was protective (50).
The role of CX3CR1 in the obstruction-induced standard kidney
fibrosis model, UUO, has not been clarified yet. In this study, we
have addressed this open question, assuming that the marked
loss of renal DCs in CX3CR1 deficiency would attenuate in-
flammation and fibrosis. However, we found that CX3CR1 was
protective in UUO because of a novel inhibitory effect on the
other CX3CR1-expressing mononuclear phagocyte type of the
kidney, the macrophages.

Materials and Methods
Mice

Eight- to 14-wk-old Cd45.1, Cd11cEYFP (60), Cx3cr1
GFP/+, and Cx3cr1

GFP/GFP

mice (61), all on a C57BL/6 background, were bred and kept under specific-
pathogen-free condition at the animal facilities of the University of Bonn
and Monash Medical Centre. Institutional and Government Review Boards
have approved all animal studies.

Induction of UUO

Adult male mice were anesthetized by inhalation of isofluorane. UUO was
performed through a midline incision. The left ureter was tied with silk
suture at two points and permanently ligated. Sham-operated mice un-
derwent an identical midline incision but without ureteric ligation. At 3, 5,
and 7 d postobstruction, mice were sacrificed, and kidneys were collected.

Renal multiphoton microscopy

Intravital multiphoton microscopy of the intact kidney was performed on
mice 3 d post-UUO, anesthetized by i.p. injection of 150 mg/kg ketamine
hydrochloride and 10 mg/kg xylazine, as described previously (18, 62). The
jugular vein was cannulated, and the left kidney was exteriorized through
a lateral incision, immersed in bicarbonate buffered saline at 37˚C, and

covered with a coverslip. Mice were kept at 37˚C. Time lapse recordings
of GFP+ cells in the kidney of Cx3cr1

GFP/+ and Cx3cr1
GFP/GFP mice

were captured using a Leica SP5 mulitphoton microscope system (Leica
Microsystems, Mannheim, Germany) with a 320 1.0 NAwater immersion
objective (18, 63). Fluorophores were excited by a SpectraPhysics MaiTai
pulsed infrared laser tuned to 860 nm, with emissions captured by non-
descanned detectors with 525/50 nm (GFP), 585/40 nm (tetramethylrhod-
amine isothiocyanate), and 650/50 nm (Alexa 633) filters. Celltracker
Orange CMRA (C34551; Molecular Probes) was used as a counterstain
to provide visual context. Images were collected with ∼120 mm Z-depth in
6-mm steps, with one Z-stack every 30s for 20–30 min and analyzed using
Imaris (version 7.0; Bitplane AG). To determine GFP+ cell motility, in-
dividual cells were tracked in vivo and a motile cell defined as one that had
moved at least the diameter of the cell body. To determine cell activity,
a morphology index was used as previously described (18), relating to the
sphericity of cells described by the rate of change in morphology index
(DMI). Cells with relatively low DMI values change morphology less than
cells with higher DMI values.

Histology and immunohistochemistry

Methyl Carnoyl’s fixed paraffin-embedded murine kidneys were sectioned
at 1 mm and stained with periodic acid–Schiff’s (PAS) for evaluation of
hydronephrosis and overall injury. For the evaluation of fibrosis, Sirius Red
stained sections as well as a-smooth muscle actin (aSMA) immunohis-
tochemistry were evaluated using computer-based morphometric analyses
by a pathologist in blinded fashion as described previously (64). In short,
for both stainings, the percentage of positively stained area was calculated
from 20 cortical fields per section, representing nearly the whole cortex.
Indirect immunoperoxidase procedure was performed as described previ-
ously (64). HRP coupled to human aSMA (clone 1A4; DakoCytomation,
Glostrup, Denmark), which cross-react with murine aSMA was used.
Fluorescence microscopy was performed on 5-mm paraffin sections from
4% PFA-fixed kidneys. GFP-expressing cells in Cx3cr1

GFP/+ mice were
identified by nuclei staining and quantified using the IX71 microscope and
the CellR software (Olympus).

Isolation of murine kidney leukocytes

Kidneys were digested with collagenase and DNAse-I (both from Sigma-
Aldrich) as described previously (7). Briefly, kidneys were digested for 45
min, and tubular fragments from digested kidneys were removed by fil-
tration through a 100-mm nylon mesh.

FIGURE 1. Lack of CX3CR1 increases renal fibrosis in UUO. (A–D) Fibrosis was quantified by Sirius red staining (A and B) and aSMA immunostaining
(C and D) of sections of ligated or contralateral kidneys from CX3CR1-competent (Cx3cr1

+/+,Cx3cr1
GFP/+ [left images or white and light gray bars]) and

CX3CR1-deficient (Cx3cr1
GFP/GFP [right images or dark gray bars]) mice 7 d after ureter ligation. (A and C) Scale bars, 50 mm. Data are mean6 SEM from

three (A and B) and two (C and D) experiments in groups of four to seven mice. *p , 0.05.
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Flow cytometry

After treatment with Fc-blocking Abs (2.4G2) cells were stained with
fluorochrome-labeled mAbs against F4/80 (CI:A3-1), CD45 (30-F11),
CD11c (N418), KI67 (SolA15; isotype control: eBR2a), Gr1 (RB6-8C5),
and Annexin V (number 550474; BD Biosciences). For intracellular cy-
tokine staining, single-cell suspensions were incubated in RPMI 1640
medium (10% FCS, penicillin/streptomycin, and glutamine) with 1 ml/ml
GolgiPlug and 1 ml/ml GolgiStop (BD Biosciences) for 4 h at 37˚C. After
cell surface staining, cells were fixed in Cytofix (BD Biosciences) and
permeabilized with PermWash (BD Biosciences). Intracellular staining
was performed for 30 min at room temperature using fluorochrome-labeled
mAbs against TGFb (TW7-16B4; isotype control: MOPC-21). For anal-
ysis of proliferation, BrdU was administered 3 and 4 d after ligation, and
incorporation of BrdU was analyzed on day 5 after ligation by flow
cytometry (number 557892; BD Biosciences). Cells were analyzed with
a BD Canto II and a BD Fortessa (BD Biosciences), and data were ana-
lyzed using Flowjo (Tree Star). For concatenated data presentation, data
from all mice within the same group was combined using Flowjo.

Transfer of bone marrow monocytes

Single-cell suspensions from the bone marrows were prepared by flush-
ing the bones with sterile and cold PBS. Bone marrow monocytes were
enriched by excluding CD19+CD3+CD11c+ cells. Bone marrow cells
(1–5 3 106) were transferred into mice.

Detection of cytokines

The protein levels of cytokines in the supernatant of mechanically homoge-
nized kidneys were determined by Luminex assay. The growth factors
M-CSF and GM-CSF were determined by using ELISA (R&D Systems).

All other levels were determined by a flow cytometry–based bead assay
(eBioscience).

RNA isolation and RT-PCR

Whole-tissue RNA from kidneys was extracted using NucleoSpin RNA II
kit (Macherey-Nagel), according to the manufacturer’s instructions. RNA
was reverse transcribed into cDNA using the High-Capacity Reverse
Transcription Kit (Applied Biosystems). Quantitative PCR was performed
for 40 cycles using SYBR Green (Applied Biosystems). QuantiTect
Primer assays (Qiagen) were used to detect mouse gene expression of
Stat1 (QT00162183), Stat6 (QT01042503), Arg1 (QT00134288), Hmox
(QT00159915), Irf5 (QT00252623), Retnla (QT00254359), and Mrc1
(QT00103012). All samples were run in duplicates and normalized to Hprt
primers (Invitrogen), forward primer (59-GTCCCAGCGTCGTGATTAGC-
GAT-39) and reverse primer (59-GGGCCACAATGTGATGGCCTCC-39).

Statistical analysis

Results are expressed as mean 6 SEM. Comparisons were drawn using
parametric T-Test and nonparametric Mann–Whitney test (Prism 5; Graphpad
Software, San Diego, CA). Significant p values were expressed as follows:
*p , 0.05; **p , 0.01; ***p , 0.001.

Results
CX3CR1 deficiency enhances renal fibrosis

The chemokine receptor CX3CR1 has been shown to promote
renal inflammation in several models (3, 49, 54, 57–59, 65). Given
that chronic kidney inflammation often leads to fibrosis, we hy-

FIGURE 2. Lack of CX3CR1 decreases inflammation and the abundance of renal mononuclear phagocytes in UUO. (A) Sections from contralateral
Cx3cr1

GFP/+ (left images) and ligated Cx3cr1
GFP/GFP (right images) mice 7 d after ureteric ligation. The white bars indicate 100 mm. (B) The graph shows the

numbers of GFP+ cells in Cx3cr1
GFP/+ (open squares) and Cx3cr1

GFP/GFP (gray circles) mice determined by counting GFP+ cells per high power field (hpf) (one
representative hpf is depicted in (A)). (C) Ligated kidneys from Cx3cr1

GFP/+ (white squares) or Cx3cr1
GFP/GFP (gray circles) mice were homogenized, and levels

of the cytokines IL-1a (top left), IL-6 (top right), (IFN-g (bottom left), and TNF (bottom right) were determined 7 d after ureteric ligation. (D) Ligated kidneys
from Cx3cr1

GFP/+ (white squares) or Cx3cr1
GFP/GFP (gray circles) mice were analyzed 7 d after ureteric ligation for relative Hmox RNA expression and of IL-10

protein expression. Data in (B) to (D) are mean 6 SEM from two experiments in groups of four to seven mice. *p , 0.05, **p , 0.05, ***p , 0.001.
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pothesized that CX3CR1 deficiency should attenuate renal fibrosis.
To test this hypothesis, we induced one of the standard kidney
fibrosis models, UUO in mice expressing or lacking CX3CR1. We
used Cx3cr1

GFP/GFP mice that homozygously express a GFP re-
porter under the control of the CX3CR1 promoter and are con-
sequently CX3CR1 deficient. As controls, we used Cx3cr1

GFP/+

mice, which express the GFP reporter heterozygously and CX3CR1-
competent wild-type mice (Cx3cr1

+/+ mice). Surprisingly, kid-
ney fibrosis in CX3CR1-deficient mice was notably aggravated
compared with control mice 7 d after UUO, as evidenced by
higher Sirius Red collagen staining in the ligated kidneys of
Cx3cr1

GFP/GFP mice (Fig. 1A, 1B). Also, aSMA staining for
profibrotic myofibroblasts was stronger in ligated kidneys of
CX3CR1-deficient mice (Fig. 1C, 1D). These findings revealed an
unexpected antifibrotic role of CX3CR1 in renal fibrosis.

CX3CR1 alters the abundance, morphology, and migration of
renal mononuclear phagocytes

To define the mechanisms underpinning the protective role of
CX3CR1, we focused on the cells that express CX3CR1 in the kid-
ney, namely mononuclear phagocytes, including DCs and macro-
phages. As reported before (3), CX3CR1-deficient (Cx3cr1

GFP/GFP)
mice normally possess far less GFP+ renal phagocytes than CX3CR1-
competent (Cx3cr1

GFP/+) mice (Fig. 2A, 2B). Also, on day 7, after
ureter ligation, fewer phagocytes were seen, albeit only 10% less
(Fig. 2A, 2B), suggesting the appearance of new phagocytes that
partially compensated for their deficiency under homeostatic
conditions. Of note, the message for the Th1 mediator Stat1 was
below detection limit, and the message for the inflammatory
cytokines IL-1a, IL-6, IFN-g, and TNF and of the proresolving
mediators, IL-10 and Hmox, did not differ between ligated kidneys
of CX3CR1-competent and -deficient mice (Fig. 2C). Thus, the
aggravated fibrosis in CX3CR1-deficient mice cannot be explained
merely by stronger renal inflammation.
These findings led us to examine in more detail the renal GFP+

phagocytes in UUO using multiphoton microscopy, which allows
analyzing their morphology and motility over time. In both
healthy CX3CR1-competent and CX3CR1-deficient mice, GFP+

cells with dendritic protrusions were present within the inter-
stitium (see Supplemental Videos 1, 2).
After UUO, GFP+ cells tended to form clusters around damaged

tubules (see Supplemental Videos 3, 4). In addition to GFP+ cells
with dendritic morphology, the kidneys of CX3CR1-deficient mice
with UUO contained larger cells (Fig. 3A) devoid of dendrites
(Fig. 3B), which were more motile (Fig. 3C). Furthermore, the
phagocytes in CX3CR1-deficient mice contained a subset that
underwent little shape change over the time of analysis (Fig. 3D).
Although these data did not reach statistical significance, they
prompted us to hypothesize that GFP+ phagocytes with monocyte/
macrophage properties might be involved in the increased fibrosis
in CX3CR1-deficient mice with UUO.

CX3CR1 differentially regulates the numbers of renal DCs and
Gr1+ macrophages in UUO

We hypothesized that higher numbers of renal macrophages might
explain the profibrotic effect of CX3CR1 deficiency in UUO
(Fig. 1) because it has been previously reported that renal mac-
rophages but not DCs mediate fibrosis in this model (16, 18, 66).
However, Cx3cr1

GFP/GFP mice possessed similar or lower numbers
of GFP+ renal phagocytes under homeostatic conditions, in ex-
perimental glomerulonephritis and in kidney infection compared
with CX3CR1-competent controls (3, 58), consistent with our
present findings in UUO (Fig. 2A, 2B). We therefore discrimi-
nated between GFP+ kidney macrophages and DCs by costaining

with F4/80 and CD11c. We found that CX3CR1 deficiency re-
duced renal CD11c+ DC numbers in the ligated and contralateral
kidney (Fig. 4A, upper gate in the dot plots) consistent with the
morphological changes shown in Fig. 3. Next, we focused on
CD11c2GFP+ cells (Fig. 4A, lower gate in the dot plots). We
found that .90% of these cells expressed F4/80 (Fig. 4B) iden-
tifying these GFP/CX3CR1-expressing cells as macrophages.
Furthermore, these data also exclude considerable contaminations
of other cells than monocytes/macrophages and DCs in the mi-
croscopy data (Figs. 2, 3). Because the microscopy findings above
(Fig. 3) hinted at the appearance of monocytes/macrophages, we
focused on the analysis of macrophages expressing the Gr1 marker,
which designates mononuclear phagocytes recently recruited from
the circulation (67, 68) and which is related to helper macrophages
expressing Ly6C (4), a component of Gr1. Gr1+ macrophages were
considerably more numerous already on day 3 after UUO (Fig.
4B, 4C). In the absence of CX3CR1, these cells were more abun-
dant than in CX3CR1-competent mice, whereas the abundance of
kidney-resident Gr12 macrophages was unchanged (Fig. 4C). On
day 7, fewer recruited macrophages were seen, whereas numbers of
Gr12 macrophages had further increased (Fig. 4C). Thus, the lack
of CX3CR1 reduced the number of CD11c+ DCs, but increased the
numbers of CD11c– Gr1+ macrophages in UUO. This shift from
DCs to macrophages explains why the total number of GFP+

phagocytes was only somewhat reduced in CX3CR1-deficient mice
(Fig. 2), and the relative increase of macrophages might explain the
increased kidney fibrosis in the mice.

CX3CR1 reduces TGF-b production by macrophages

Next, we examined whether CX3CR1 also modulates the func-
tionality of macrophages. To this end, we analyzed the production
of TGF-b, the key profibrotic molecule in the kidney (65, 69).
Most of the TGF-b–producing leukocytes indeed expressed F4/80
(Supplemental Fig. 1). Importantly, the frequencies (Supplemental
Fig. 1) and numbers (Fig. 4D) of TGF-b–producing Gr1– and
Gr1+ macrophages were increased in ligated kidneys of CX3CR1-
deficient mice. M1/M2 differentiation markers such as Arg1,
Mrc1, Irf5, Stat6, and Retnla1 were little altered in CX3CR1

FIGURE 3. In vivo multiphoton microscopy of Cx3cr1
GFP/+ and

Cx3cr1
GFP/GFP mice. (A) Analysis shows the proportion of cells with a di-

ameter larger than 8 mm (Cx3cr1
GFP/+ [open squares]; Cx3cr1

GFP/GFP [gray
circles]). (B and C) In the absence of CX3CR1, there is a trend (p = 0.09)
toward a higher proportion of GFP+ cells without protrusions (B) and higher
number of motile cells (C) (Cx3cr1

GFP/+ [open squares]; Cx3cr1
GFP/GFP [gray

circles]). (D) Change in morphology index (DMI). Analysis of cellular shape
change over time shows that CX3CR1-deficient mice tend to have more cells
that change shape , 30 min. The x-axis in (D) represents groups of cells that
are changing their shape more over time (Cx3cr1

GFP/+ [open squares];
Cx3cr1

GFP/GFP [gray circles]). Videos can be seen in the Supplemental Videos
1–4; data (A–D) represent the mean 6 SEM of five to six mice per group.
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deficiency (Fig. 5), indicating that the functional changes of mac-
rophages could not be explained by effects on M1/M2 differentia-
tion (70, 71). These data demonstrate that CX3CR1 not only
negatively regulates the numbers of profibrotic macrophages but
also their fibrogenic potential.

CX3CR1 regulates neither recruitment nor differentiation of
kidney macrophages

The inhibitory effects of CX3CR1 on renal macrophages could
theoretically be due to reduced recruitment of macrophage pre-
cursors such as monocytes, reduced intrarenal differentiation into
macrophages, reduced proliferation, increased survival or be due
to a combination of these factors. Therefore, we examined all of
these potential mechanisms.
To establish a system to analyze macrophage precursor re-

cruitment to the kidney, we first adoptively transferred bone
marrow–derived monocytes expressing a YFP reporter for CD11c,
which allows convenient discrimination between DCs and mac-
rophages, into CD45.1-congenic mice with or without UUO. Only
a few monocytes reached the kidneys of healthy mice and the
contralateral kidney of mice with UUO (Fig. 6A), suggesting

that renal phagocytes possess a low turnover rate. In contrast,
ligated kidneys contained clearly detectable monocytes 2 d after
transfer, and some of them were YFP+ (Fig. 6A), indicating differ-
entiation into DCs.
To investigate whether CX3CR1 is required for the entry of

these precursors into the kidney, we transferred monocytes from
Cx3cr1

GFP/GFP mice or Cx3cr1
GFP/+ mice into CX3CR1-com-

petent wild-type recipients 1 d after ureter ligation (Fig. 6B,
6C). After an additional 2 d, less CX3CR1-deficient phagocytes
had entered the ligated kidneys than did CX3CR1-competent
phagocytes (Fig. 6C). Notably, no difference was seen in the
blood (Supplemental Fig. 2), excluding an effect of CX3CR1 on
the abundance of circulating macrophage precursors. Thus, CX3CR1
promoted, rather than inhibited, phagocyte precursor recruit-
ment. Furthermore, the levels of the chemokine MIP-1a that
can attract macrophage precursors were decreased in ligated
and also in contralateral kidneys of CX3CR1-deficient mice, and
there were trends toward reduced levels of RANTES, MCP-1, and
MCP-3 (Fig. 6D). This is consistent with reduced macrophage
precursor recruitment and may be explained by the reduction in
chemokine-producing DCs in CX3CR1-deficient mice (3).

FIGURE 4. CX3CR1 differentially regulates the numbers of renal DCs and Gr1+ macrophages and TGF-b production in UUO. (A) Flow cytometric
analysis of single-cell suspensions from nonligated (healthy; left), contralateral (middle), and ligated kidneys (right) of Cx3cr1

GFP/+ (upper row) and
Cx3cr1

GFP/GFP (lower row) mice. Shown is CD11c staining for DCs versus CX3CR1 expression levels (GFP) on CD45+ immune cells. Note that ho-
mozygous Cx3cr1

GFP/GFP mice show two times stronger GFP signals. (B) The CD11c–GFP+ macrophages [bottom right region in (A)] were gated and their
F4/80 versus Gr1 expression was displayed to identify Gr1– and Gr1+ macrophages (top right and left region). (C) Enumeration of CD11c–CD45+GFP+F4/
80+ macrophages (Gr1– macrophages in the left panel, Gr1+ macrophages in the middle panel) and CD11c+ CD45+ DCs (right panel) in healthy mice (d0)
and on days 3 and 7 after UUO. (D) Three days after ureteric ligation, intracellular content of the profibrotic factor TGF-b was determined on F4/80+GFP+

CD11c– macrophages in ligated and contralateral kidneys as indicated and the numbers of these TGFb+F4/80+GFP+CD11c– macrophages expressing Gr1
or not were displayed. Dot plots in (A) represent concatenated dot plots from four to seven mice. Data represent the mean6 SEM from three (A–C) and four
(D) individual experiments in groups of four to seven mice. *p , 0.05, **p , 0.01, ***p , 0.001.
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To study whether CX3CR1 regulated the differentiation of
monocytes into macrophages versus DCs, we determined the ratio
between donor-derived DCs and macrophages after entering the
ligated kidney. This parameter was not significantly changed in
CX3CR1 deficiency (Fig. 7A). Furthermore, the intrarenal levels
of cytokines that affect DC/macrophage differentiation, GM-CSF
or M-CSF, were CX3CR1 independent (Fig. 7B). Taken together,
these findings argue against changes in macrophage recruitment or
differentiation as an explanation for their increased intrarenal
numbers in CX3CR1-deficient mice.

CX3CR1 regulates intrarenal macrophage proliferation but not
their survival

We next investigated whether CX3CR1 regulates apoptosis by stain-
ing with Annexin V. We found that more Gr1– and Gr1+ macro-
phages were apoptotic within the ligated kidneys (Fig. 8A, 8B, black
line versus gray line). However, lack of CX3CR1 did not reduce but
instead increased the frequency of Annexin V+Gr1– and Gr1+ mac-
rophages (Fig. 8A, 8B), excluding apoptosis as the mechanism for the
increased number of macrophages in CX3Cr1-deficient animals.
It has been previously reported that tissue macrophage numbers

can be regulated by their local proliferation (72, 73). To investi-
gate whether CX3CR1 decreases intrarenal macrophage numbers by
inhibiting their proliferation, we determined expression of the pro-
liferation marker Ki67 on day 3 and uptake of BrdU from day 3
until day 5 after ureteric ligation. We found that Ki67 expression
was significantly increased in macrophages of ligated kidneys from
CX3CR1-deficient mice compared with CX3CR1-competent mice
(Fig. 9A), and this was seen in both Gr1– and Gr1+ macrophages
(Fig. 9B). Furthermore, more macrophages of CX3CR1-deficient
mice incorporated BrdU (Fig. 9C, 9D), and the uptake per macro-
phage was higher (Fig. 9E), verifying local CX3CR1-dependent
proliferation of macrophages. Notably, such increased proliferation
was not detectable in DCs (Fig. 9D). Thus, CX3CR1 inhibits local
macrophage proliferation in UUO, and this can explain the higher
numbers of profibrotic renal macrophages in the absence of CX3CR1.

Discussion
The chemokine receptor CX3CR1 is widely expressed by DCs and
macrophages (74), but its functional role is still not fully clear. In
this paper, we report a previously undescribed antifibrotic effect of

CX3CR1: it reduced the inflammation-induced proliferation of
TGF-b–producing renal macrophages, which are critically im-
portant in experimental kidney fibrosis (15–18). This finding was
unexpected, given the proinflammatory and profibrotic properties
of CX3CR1 not only in diseases of the kidney (3, 49, 54, 57–59,
65), but also of the lung (75), liver (50), intestine (28), skin (55),
arteriosclerotic vessels (76), and the CNS (33). CX3CR1 has been
shown to contribute to the inflammatory recruitment of monocytes
from the circulation into all these organs (44). We found that
CX3CR1 had a similar effect in UUO so that fewer monocytes
lacking this receptor entered the inflamed kidneys. The lower
levels of monocyte-attracting chemokines and of inflammatory
mediators that we detected in kidneys of CX3CR1-deficient mice
may be responsible for the reduced kidney recruitment of these
cells. It is likely that these cells originated from monocytes, which
have been shown to give rise to tissue macrophages under in-
flammatory conditions (5). The reduction of monocyte-attracting
chemokines likely resulted from the paucity of DCs in kidneys of
CX3CR1-deficient animals because DCs are the principal pro-
ducers of chemokines and inflammatory mediators in the kidney
(77–79). However, these findings were hard to reconcile with the
accumulation of macrophages in CX3CR1-deficient mice, imply-
ing that other mechanisms must exist that overcompensated for the
reduced attraction of macrophage precursors.
One such mechanism might be a negative effect of CX3CR1 on

the survival of tissue macrophages. However, previous studies in
disease models of liver, CNS, gut, and arteriosclerotic vessels (74)
demonstrated that CX3CR1 signaling increased rather than re-
duced the life span of macrophages. In contrast to these findings,
one recent study reported increased macrophage numbers and
liver fibrosis in CX3CR1-deficient mice after surgical bile duct
ligation, a model that resembles UUO by being induced by me-
chanic tissue damage (50). The discrepancy between macrophage
accumulation and decreased macrophage life span in that study
was suggested to have resulted from the release of proinflam-
matory mediators from CX3CR1-deficient dying macrophages that
attracted further profibrotic macrophages. Although we did ob-
serve more dying macrophages after UUO in CX3CR1-deficient
mice, we found neither increased monocyte-attracting chemokines
and inflammatory cytokines, nor did we find a stronger influx of
inflammatory monocytes, arguing against inflammation resulting

FIGURE 5. Polarization of macrophages does not depend on CX3CR1. Gene expression profiles in contralateral and ligated kidneys 3 d after ureteric li-
gation. Data are normalized to the housekeeping gene Hprt and represent the mean 6 SEM from two individual experiments in groups of four to six mice.
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from premature macrophage death in the kidney as the underlying
reason for macrophage accumulation.
Another hypothetic mechanism is that CX3CR1 might cause

immigrating monocytes to differentiate preferentially into mac-
rophages rather than DCs. DC numbers are severely reduced in
CX3CR1-deficient mice (3), which would be consistent with al-
tered differentiation. DCs do not play a major role in UUO,

whereas macrophages are critical (18, 49, 54). This is not unex-
pected given that DCs primarily regulate adaptive immune
responses, explaining why they affected fibrosis in models that
involve adaptive immune cells, such as ischemia/reperfusion in-
jury, crescentic glomerulonephritis and hypertensive nephropathy
(3, 49, 54, 57). By contrast, a model of mechanic tissue injury like
UUO is more likely mediated by cells of the innate immune

FIGURE 6. Lack of CX3CR1
decreases phagocyte recruitment into
the kidney. (A) Sorted CD19–CD3–

CD11c– bone marrow cells from
CD45.2 CD11cYFP mice were adop-
tively transferred into CD45.1 wild-
type mice. The frequency of donor
YFP+CD45.2+F4/80+CD11c+ DCs
(upper region) and of YFP–CD45.2+

F4/80+CD11c– macrophages (lower
region) in the kidney was determined
3 d after ureter ligation (bone marrow
cells were transferred 1 d after liga-
tion). (B) Sorted CD19–CD3–CD11c–

bone marrow cells from Cx3cr1
GFP/+

mice were transferred into wild-type
mice 1 d after ligation. Three days
after ureter ligation GFP+F4/80+

CD11c+ DCs (upper region) and GFP+

F4/80+CD11c– macrophages (lower
region) were detected by flow cytom-
etry. (C) Sorted CD19–CD3–CD11c–

bone marrow cells from Cx3cr1
GFP/+

or Cx3cr1
GFP/GFP mice were trans-

ferred into wild-type mice. Three days
after ureter ligation, the number of F4/
80+GFP+CD11c– macrophages (left
panel) and of GFP+F4/80+CD11c+

DCs (right panel) were determined by
flow cytometry. The group designated
without transfer was used to control
for specific detection of transferred
cells. (D) Kidneys from Cx3cr1

GFP/+

(white squares) or Cx3cr1
GFP/GFP (gray

circles) mice were homogenized and
levels of the chemokines MCP-1 (top
left), MCP-3 (top right), MIP1a (bottom
left), and RANTES (bottom right) were
determined 3 d after ureter ligation.
Control animals did not underwent
unilateral ureteral ligation. Data rep-
resent three (A–C) and two (D) experi-
ments in groups of five to six mice.
Results in (D) are mean 6 SEM. *p ,
0.05, **p , 0.01.
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system, like macrophages. However, adoptive transfer experi-
ments revealed that monocytes expressing or lacking CX3CR1
gave rise to similar ratios between macrophages and DCs, arguing
against an effect of CX3CR1-signaling on the monocytes’ decision
to differentiate into either DCs or macrophages. This conclusion
was corroborated by unchanged levels of the growth factors that
usually govern this decision, M-CSF and GM-CSF.
In vivo multiphoton microscopic analysis revealed morphologic

alterations of CX3CR1-deficient renal phagocytes. Although there
were slight changes in the morphology of CX3CR1

+ kidney DCs,
such as more yet shorter dendrites (our unpublished observations),
it is unlikely that these alterations impacted fibrogenesis given
that DCs do not affect renal fibrosis (18, 49, 54). However, in addi-
tion to resident DCs, two-photon microscopy revealed larger and
rounder CX3CR1

+ cells that were more motile and maintained
their shape over time, which is consistent with the morphology

and dynamics of monocytes/macrophages. These cells were more
abundant in CX3CR1-deficient mice, prompting us to hypothesize
about a functional link between macrophages and CX3CR1. In-
deed, we noted an inhibitory effect of CX3CR1 on intrarenal
macrophage proliferation. This can explain why these cells ac-
cumulated in CX3CR1-deficient mice, although their precursor
recruitment was less efficient and although more of them were
apoptotic. As we excluded other potential causes, increased pro-
liferation was most likely the cause for the accumulation of
macrophages in the CX3CR1-deficient kidney. It is possible that
CX3CR1 also prevents macrophage proliferation in DC-dependent
models of renal disease (e.g., crescentic glomerulonephritis) but that
this anti-inflammatory effect does not become manifest because its
proinflammatory effect on the more numerous DCs prevails.
Traditionally, tissue macrophages were thought to arise from

circulating monocytes recruited in response to locally produced
chemokines (11). Recent findings have revealed that some tissue
macrophages are derived from embryonic precursors (22). A
sudden demand because of inflammatory conditions is met by the
proliferation of such tissue-resident macrophages, in particular un-
der Th2 or M2-associated conditions (72, 73, 80). We found that all
macrophages, including those that had just recently been recruited
to the kidney, showed stronger proliferation in the absence of
CX3CR1. These findings are consistent with the concept that local
proliferation of tissue macrophages regulates their numbers and ex-
tend this concept by showing that also recently recruited macrophages
are locally regulated in the inflamed kidney. It remains to be seen
whether this mechanism also contributes to fibrosis in other organs.
CX3CR1 not only affected the abundance, but also the func-

tional state of renal macrophages. In its absence, more macro-
phages produced TGF-b, the key profibrotic mediator in the
kidney (69). A previous study showed that CCR2-dependent
macrophages produced TGF-b in UUO and that the lack of
these cells significantly reduced renal fibrosis (16). Also, we found
that both Gr1– and Gr1+ macrophages produced TGF-b and that
production was increased in the absence of CX3CR1. TGFb
production suggested acquisition of a profibrotic functional state
change. This state could not be explained by M2 differentiation,
nor was it associated with higher renal inflammation. Recently, the
classical M1/M2 paradigm was refined by the discovery of an
activation-independent functional state that does not fall into the
M1 or M2 definition (71). Our findings are consistent with this
notion by demonstrating that TGF-b–producing macrophages
cannot be categorized as classical M1 and M2 macrophages. Fu-
ture studies are required to clarify whether these profibrotic
macrophages belong to a distinct functional state.
In summary, we report a novel inhibitory effect of CX3CR1 on

local macrophage proliferation and on fibrogenesis in the kidney.

FIGURE 7. Differentiation of infiltrating monocytes into DCs is CX3CR1-independent. (A) Sorted CD19–CD3–CD11c– bone marrow cells from
Cx3cr1

GFP/+ or Cx3cr1
GFP/GFP mice were transferred into wild-type mice. Three days after ureter ligation, the number of F4/80+GFP+CD11c– macrophages

and of GFP+F4/80+CD11c+ DCs were determined by flow cytometry, and the ratio between these DCs and macrophages were calculated (number of DCs
per macrophage). (B) Levels of GM-CSF (left) and M-CSF (right) in homogenates of ligated kidneys from Cx3cr1

GFP/+ (white squares) and Cx3cr1
GFP/GFP

(gray circles) mice 3 d after UUO in comparison with contralateral kidneys. Results are mean 6 SEM and represent three (A) and two (B) independent
experiments in groups of 5–10 mice.

FIGURE 8. Lack of CX3CR1 increases apoptosis of renal macrophages
in UUO. (A and B) Gr1– (A) and Gr1+ (B) macrophages (CD45+CD11c–

GFP+F4/80+; gating strategy, see Fig. 4A, 4B) from ligated (black thick
line) and contralateral (gray line) kidneys from Cx3cr1

GFP/+ (left panels)
and Cx3cr1

GFP/GFP (right panels) mice were analyzed by flow cytometry
for annexin V binding on day 3 after ureter ligation. The gray area shows
fluorescence without addition of annexin V. Data are mean 6 SEM and the
graphs represent concatenated histograms from seven to eight mice (con-
catenated = combined histograms from seven to eight mice).
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In crescentic GN, the previously described proinflammatory in-
fluence of CX3CR1 on DCs prevailed (3) because macrophages
are downstream of DCs in the pathomechanism of this disease and
because DCs outnumber macrophages in the kidney. However, in
DC-independent renal diseases like UUO, the inhibitory effect of
CX3CR1 on macrophages becomes manifest, as we demonstrated
in the present study, so that CX3CR1 inhibition in such diseases
aggravates fibrosis. This may apply also to organs in which
CX3CR1 does not regulate DCs, like the liver or the lung (3). In
this case, therapeutic CX3CR1 inhibition in liver and lung disease
may turn out profibrotic.
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